Oscillatory entrainment of thalamic neurons by theta rhythm in freely moving rats.

Parts of the thalamus
Parts of the thalamus (Photo credit: Wikipedia)

Take-home message: The thalamus plays a key role in  learning and memory. However, the neurons of the anteroventral nucleus have not been characterised in vivo. Here, we provide a framework for the classification of neuron type, based on their electrophysiological phenotype, and show that many of these cells are theta-modulated (a strong 7-12 Hz oscillation in the EEG, studied most frequently in the hippocampal formation) during non-sleep periods. [Download the paper]

Oscillatory entrainment of thalamic neurons by theta rhythm in freely moving rats.

J Neurophysiol. 2011 Jan;105(1):4-17. doi: 10.1152/jn.00771.2010. Epub 2010 Oct 20.

Tsanov MChah EWright NVann SDReilly RErichsen JTAggleton JPO’Mara SM.

Trinity College Institute of Neuroscience. Trinity College Dublin, Dublin 2, Ireland.

The anterior thalamic nuclei are assumed to support episodic memory with anterior thalamic dysfunction a core feature of diencephalic amnesia. To date, the electrophysiological characterization of this region in behaving rodents has been restricted to the anterodorsal nucleus. Here we compared single-unit spikes with population activity in the anteroventral nucleus (AV) of freely moving rats during foraging and during naturally occurring sleep. We identified AV units that synchronize their bursting activity in the 6-11 Hz range. We show for the first time in freely moving rats that a subgroup of AV neurons is strongly entrained by theta oscillations. This feature together with their firing properties and spike shape suggests they be classified as “theta” units. To prove the selectivity of AV theta cells for theta rhythm, we compared the relation of spiking rhythmicity to local field potentials during theta and non-theta periods. The most distinguishable non-theta oscillations in rodent anterior thalamus are sleep spindles. We therefore compared the firing properties of AV units during theta and spindle periods. We found that theta and spindle oscillations differ in their spatial distribution within AV, suggesting separate cellular sources for these oscillations. While theta-bursting neurons were related to the distribution of local field theta power, spindle amplitude was independent of the theta units’ position. Slow- and fast-spiking bursting units that are selectively entrained to theta rhythm comprise 23.7% of AV neurons. Our results provide a framework for electrophysiological classification of AV neurons as part of theta limbic circuitry.

PMID: 20962067

PMCID: PMC3023377

Author: Shane O'Mara

Neuroscientist

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s